Index and query documents
Learn how to use the Redis Query Engine with JSON and hash documents.
This example shows how to create a search index for JSON documents and run queries against the index. It then goes on to show the slight differences in the equivalent code for hash documents.
Initialize
Make sure that you have Redis Open Source
or another Redis server available. Also install the
node-redis
client library if you
haven't already done so.
Add the following dependencies:
import {
createClient,
SchemaFieldTypes,
AggregateGroupByReducers,
AggregateSteps,
} from 'redis';
Create data
Create some test data to add to your database. The example data shown below is compatible with both JSON and hash objects.
const user1 = {
name: 'Paul John',
email: '[email protected]',
age: 42,
city: 'London'
};
const user2 = {
name: 'Eden Zamir',
email: '[email protected]',
age: 29,
city: 'Tel Aviv'
};
const user3 = {
name: 'Paul Zamir',
email: '[email protected]',
age: 35,
city: 'Tel Aviv'
};
Add the index
Connect to your Redis database. The code below shows the most basic connection but see Connect to the server to learn more about the available connection options.
const client = await createClient();
await client.connect();
Create an index. In this example, only JSON documents with the key prefix user:
are indexed. For more information, see Query syntax.
await client.ft.create('idx:users', {
'$.name': {
type: SchemaFieldTypes.TEXT,
AS: 'name'
},
'$.city': {
type: SchemaFieldTypes.TEXT,
AS: 'city'
},
'$.age': {
type: SchemaFieldTypes.NUMERIC,
AS: 'age'
}
}, {
ON: 'JSON',
PREFIX: 'user:'
});
Add the data
Add the three sets of user data to the database as
JSON objects.
If you use keys with the user:
prefix then Redis will index the
objects automatically as you add them. Note that placing
the commands in a Promise.all()
call is an easy way to create a
pipeline,
which is more efficient than sending the commands individually.
const [user1Reply, user2Reply, user3Reply] = await Promise.all([
client.json.set('user:1', '$', user1),
client.json.set('user:2', '$', user2),
client.json.set('user:3', '$', user3)
]);
Query the data
You can now use the index to search the JSON objects. The
query
below searches for objects that have the text "Paul" in any field
and have an age
value in the range 30 to 40:
let findPaulResult = await client.ft.search('idx:users', 'Paul @age:[30 40]');
console.log(findPaulResult.total); // >>> 1
findPaulResult.documents.forEach(doc => {
console.log(`ID: ${doc.id}, name: ${doc.value.name}, age: ${doc.value.age}`);
});
Specify query options to return only the city
field:
let citiesResult = await client.ft.search('idx:users', '*',{
RETURN: 'city'
});
console.log(citiesResult.total); // >>> 3
citiesResult.documents.forEach(cityDoc => {
console.log(cityDoc.value);
});
Use an aggregation query to count all users in each city.
let aggResult = await client.ft.aggregate('idx:users', '*', {
STEPS: [{
type: AggregateSteps.GROUPBY,
properties: '@city',
REDUCE: [{
type: AggregateGroupByReducers.COUNT,
AS: 'count'
}]
}]
});
console.log(aggResult.total); // >>> 2
aggResult.results.forEach(result => {
console.log(`${result.city} - ${result.count}`);
});
Finally, close the connection to Redis.
await client.quit();
Differences with hash documents
Indexing for hash documents is very similar to JSON indexing but you need to specify some slightly different options.
When you create the schema for a hash index, you don't need to
add aliases for the fields, since you use the basic names to access
the fields anyway. Also, you must use HASH
for the ON
option
when you create the index. The code below shows these changes with
a new index called hash-idx:users
, which is otherwise the same as
the idx:users
index used for JSON documents in the previous examples.
await client.ft.create('hash-idx:users', {
'name': {
type: SchemaFieldTypes.TEXT
},
'city': {
type: SchemaFieldTypes.TEXT
},
'age': {
type: SchemaFieldTypes.NUMERIC
}
}, {
ON: 'HASH',
PREFIX: 'huser:'
});
You use hSet()
to add the hash
documents instead of json.set()
,
but the same flat userX
objects work equally well with either
hash or JSON:
const [huser1Reply, huser2Reply, huser3Reply] = await Promise.all([
client.hSet('huser:1', user1),
client.hSet('huser:2', user2),
client.hSet('huser:3', user3)
]);
The query commands work the same here for hash as they do for JSON (but the name of the hash index is different). The format of the result is also the same:
let findPaulHashResult = await client.ft.search(
'hash-idx:users', 'Paul @age:[30 40]'
);
console.log(findPaulHashResult.total); // >>> 1
findPaulHashResult.documents.forEach(doc => {
console.log(`ID: ${doc.id}, name: ${doc.value.name}, age: ${doc.value.age}`);
});
// >>> ID: huser:3, name: Paul Zamir, age: 35
More information
See the Redis Query Engine docs for a full description of all query features with examples.