LLM Cache
SemanticCache
class SemanticCache(name='llmcache', distance_threshold=0.1, ttl=None, vectorizer=None, filterable_fields=None, redis_client=None, redis_url='redis://localhost:6379', connection_kwargs={}, overwrite=False, **kwargs)
Bases: BaseLLMCache
Semantic Cache for Large Language Models.
Semantic Cache for Large Language Models.
- Parameters:
- name (str , optional) – The name of the semantic cache search index. Defaults to “llmcache”.
- distance_threshold (float , optional) – Semantic threshold for the cache. Defaults to 0.1.
- ttl (Optional [ int ] , optional) – The time-to-live for records cached in Redis. Defaults to None.
- vectorizer (Optional [ BaseVectorizer ] , optional) – The vectorizer for the cache. Defaults to HFTextVectorizer.
- filterable_fields (Optional [ List [ Dict [ str , Any ] ] ]) – An optional list of RedisVL fields that can be used to customize cache retrieval with filters.
- redis_client (Optional [ Redis ] , optional) – A redis client connection instance. Defaults to None.
- redis_url (str , optional) – The redis url. Defaults to redis://localhost:6379.
- connection_kwargs (Dict [ str , Any ]) – The connection arguments for the redis client. Defaults to empty {}.
- overwrite (bool) – Whether or not to force overwrite the schema for the semantic cache index. Defaults to false.
- Raises:
- TypeError – If an invalid vectorizer is provided.
- TypeError – If the TTL value is not an int.
- ValueError – If the threshold is not between 0 and 1.
- ValueError – If existing schema does not match new schema and overwrite is False.
async acheck(prompt=None, vector=None, num_results=1, return_fields=None, filter_expression=None, distance_threshold=None)
Async check the semantic cache for results similar to the specified prompt or vector.
This method searches the cache using vector similarity with either a raw text prompt (converted to a vector) or a provided vector as input. It checks for semantically similar prompts and fetches the cached LLM responses.
- Parameters:
- prompt (Optional [ str ] , optional) – The text prompt to search for in the cache.
- vector (Optional [ List [ float ] ] , optional) – The vector representation of the prompt to search for in the cache.
- num_results (int , optional) – The number of cached results to return. Defaults to 1.
- return_fields (Optional [ List [ str ] ] , optional) – The fields to include in each returned result. If None, defaults to all available fields in the cached entry.
- filter_expression (Optional [FilterExpression ]) – Optional filter expression that can be used to filter cache results. Defaults to None and the full cache will be searched.
- distance_threshold (Optional [ float ]) – The threshold for semantic vector distance.
-
- Returns:
- A list of dicts containing the requested
- return fields for each similar cached response.
- Return type: List[Dict[str, Any]]
- Raises:
- ValueError – If neither a prompt nor a vector is specified.
- ValueError – if ‘vector’ has incorrect dimensions.
- TypeError – If return_fields is not a list when provided.
response = await cache.acheck(
prompt="What is the captial city of France?"
)
async aclear()
Async clear the cache of all keys.
- Return type: None
async adelete()
Async delete the cache and its index entirely.
- Return type: None
async adisconnect()
Asynchronously disconnect from Redis and search index.
Closes all Redis connections and index connections.
async adrop(ids=None, keys=None)
Async drop specific entries from the cache by ID or Redis key.
- Parameters:
- ids (Optional [ List [ str ] ]) – List of entry IDs to remove from the cache. Entry IDs are the unique identifiers without the cache prefix.
- keys (Optional [ List [ str ] ]) – List of full Redis keys to remove from the cache. Keys are the complete Redis keys including the cache prefix.
- Return type: None
NOTE
At least one of ids or keys must be provided.
- Raises: ValueError – If neither ids nor keys is provided.
- Parameters:
- ids (List [ str ] | None)
- keys (List [ str ] | None)
- Return type: None
async aexpire(key, ttl=None)
Asynchronously set or refresh the expiration time for a key in the cache.
- Parameters:
- key (str) – The Redis key to set the expiration on.
- ttl (Optional [ int ] , optional) – The time-to-live in seconds. If None, uses the default TTL configured for this cache instance. Defaults to None.
- Return type: None
NOTE
If neither the provided TTL nor the default TTL is set (both are None), this method will have no effect.
async astore(prompt, response, vector=None, metadata=None, filters=None, ttl=None)
Async stores the specified key-value pair in the cache along with metadata.
- Parameters:
- prompt (str) – The user prompt to cache.
- response (str) – The LLM response to cache.
- vector (Optional [ List [ float ] ] , optional) – The prompt vector to cache. Defaults to None, and the prompt vector is generated on demand.
- metadata (Optional [ Dict [ str , Any ] ] , optional) – The optional metadata to cache alongside the prompt and response. Defaults to None.
- filters (Optional [ Dict [ str , Any ] ]) – The optional tag to assign to the cache entry. Defaults to None.
- ttl (Optional [ int ]) – The optional TTL override to use on this individual cache entry. Defaults to the global TTL setting.
- Returns: The Redis key for the entries added to the semantic cache.
- Return type: str
- Raises:
- ValueError – If neither prompt nor vector is specified.
- ValueError – if vector has incorrect dimensions.
- TypeError – If provided metadata is not a dictionary.
key = await cache.astore(
prompt="What is the captial city of France?",
response="Paris",
metadata={"city": "Paris", "country": "France"}
)
async aupdate(key, **kwargs)
Async update specific fields within an existing cache entry. If no fields are passed, then only the document TTL is refreshed.
- Parameters: key (str) – the key of the document to update using kwargs.
- Raises:
- ValueError if an incorrect mapping is provided as a kwarg. –
- TypeError if metadata is provided and not of type dict. –
- Return type: None
key = await cache.astore('this is a prompt', 'this is a response')
await cache.aupdate(
key,
metadata={"hit_count": 1, "model_name": "Llama-2-7b"}
)
check(prompt=None, vector=None, num_results=1, return_fields=None, filter_expression=None, distance_threshold=None)
Checks the semantic cache for results similar to the specified prompt or vector.
This method searches the cache using vector similarity with either a raw text prompt (converted to a vector) or a provided vector as input. It checks for semantically similar prompts and fetches the cached LLM responses.
- Parameters:
- prompt (Optional [ str ] , optional) – The text prompt to search for in the cache.
- vector (Optional [ List [ float ] ] , optional) – The vector representation of the prompt to search for in the cache.
- num_results (int , optional) – The number of cached results to return. Defaults to 1.
- return_fields (Optional [ List [ str ] ] , optional) – The fields to include in each returned result. If None, defaults to all available fields in the cached entry.
- filter_expression (Optional [FilterExpression ]) – Optional filter expression that can be used to filter cache results. Defaults to None and the full cache will be searched.
- distance_threshold (Optional [ float ]) – The threshold for semantic vector distance.
-
- Returns:
- A list of dicts containing the requested
- return fields for each similar cached response.
- Return type: List[Dict[str, Any]]
- Raises:
- ValueError – If neither a prompt nor a vector is specified.
- ValueError – if ‘vector’ has incorrect dimensions.
- TypeError – If return_fields is not a list when provided.
response = cache.check(
prompt="What is the captial city of France?"
)
clear()
Clear the cache of all keys.
- Return type: None
delete()
Delete the cache and its index entirely.
- Return type: None
disconnect()
Disconnect from Redis and search index.
Closes all Redis connections and index connections.
drop(ids=None, keys=None)
Drop specific entries from the cache by ID or Redis key.
- Parameters:
- ids (Optional [ List [ str ] ]) – List of entry IDs to remove from the cache. Entry IDs are the unique identifiers without the cache prefix.
- keys (Optional [ List [ str ] ]) – List of full Redis keys to remove from the cache. Keys are the complete Redis keys including the cache prefix.
- Return type: None
NOTE
At least one of ids or keys must be provided.
- Raises: ValueError – If neither ids nor keys is provided.
- Parameters:
- ids (List [ str ] | None)
- keys (List [ str ] | None)
- Return type: None
expire(key, ttl=None)
Set or refresh the expiration time for a key in the cache.
- Parameters:
- key (str) – The Redis key to set the expiration on.
- ttl (Optional [ int ] , optional) – The time-to-live in seconds. If None, uses the default TTL configured for this cache instance. Defaults to None.
- Return type: None
NOTE
If neither the provided TTL nor the default TTL is set (both are None), this method will have no effect.
set_threshold(distance_threshold)
Sets the semantic distance threshold for the cache.
- Parameters: distance_threshold (float) – The semantic distance threshold for the cache.
- Raises: ValueError – If the threshold is not between 0 and 1.
- Return type: None
set_ttl(ttl=None)
Set the default TTL, in seconds, for entries in the cache.
- Parameters: ttl (Optional [ int ] , optional) – The optional time-to-live expiration for the cache, in seconds.
- Raises: ValueError – If the time-to-live value is not an integer.
- Return type: None
store(prompt, response, vector=None, metadata=None, filters=None, ttl=None)
Stores the specified key-value pair in the cache along with metadata.
- Parameters:
- prompt (str) – The user prompt to cache.
- response (str) – The LLM response to cache.
- vector (Optional [ List [ float ] ] , optional) – The prompt vector to cache. Defaults to None, and the prompt vector is generated on demand.
- metadata (Optional [ Dict [ str , Any ] ] , optional) – The optional metadata to cache alongside the prompt and response. Defaults to None.
- filters (Optional [ Dict [ str , Any ] ]) – The optional tag to assign to the cache entry. Defaults to None.
- ttl (Optional [ int ]) – The optional TTL override to use on this individual cache entry. Defaults to the global TTL setting.
- Returns: The Redis key for the entries added to the semantic cache.
- Return type: str
- Raises:
- ValueError – If neither prompt nor vector is specified.
- ValueError – if vector has incorrect dimensions.
- TypeError – If provided metadata is not a dictionary.
key = cache.store(
prompt="What is the captial city of France?",
response="Paris",
metadata={"city": "Paris", "country": "France"}
)
update(key, **kwargs)
Update specific fields within an existing cache entry. If no fields are passed, then only the document TTL is refreshed.
- Parameters: key (str) – the key of the document to update using kwargs.
- Raises:
- ValueError if an incorrect mapping is provided as a kwarg. –
- TypeError if metadata is provided and not of type dict. –
- Return type: None
key = cache.store('this is a prompt', 'this is a response')
cache.update(key, metadata={"hit_count": 1, "model_name": "Llama-2-7b"})
property aindex:
AsyncSearchIndex
| None
The underlying AsyncSearchIndex for the cache.
- Returns: The async search index.
- Return type: AsyncSearchIndex
property distance_threshold: float
The semantic distance threshold for the cache.
- Returns: The semantic distance threshold.
- Return type: float
property index:
SearchIndex
The underlying SearchIndex for the cache.
- Returns: The search index.
- Return type: SearchIndex
property ttl: int | None
The default TTL, in seconds, for entries in the cache.
Embeddings Cache
EmbeddingsCache
class EmbeddingsCache(name='embedcache', ttl=None, redis_client=None, redis_url='redis://localhost:6379', connection_kwargs={})
Bases: BaseCache
Embeddings Cache for storing embedding vectors with exact key matching.
Initialize an embeddings cache.
- Parameters:
- name (str) – The name of the cache. Defaults to “embedcache”.
- ttl (Optional [ int ]) – The time-to-live for cached embeddings. Defaults to None.
- redis_client (Optional [ Redis ]) – Redis client instance. Defaults to None.
- redis_url (str) – Redis URL for connection. Defaults to “redis://localhost:6379”.
- connection_kwargs (Dict [ str , Any ]) – Redis connection arguments. Defaults to {}.
- Raises: ValueError – If vector dimensions are invalid
cache = EmbeddingsCache(
name="my_embeddings_cache",
ttl=3600, # 1 hour
redis_url="redis://localhost:6379"
)
async aclear()
Async clear the cache of all keys.
- Return type: None
async adisconnect()
Async disconnect from Redis.
- Return type: None
async adrop(text, model_name)
Async remove an embedding from the cache.
Asynchronously removes an embedding from the cache.
- Parameters:
- text (str) – The text input that was embedded.
- model_name (str) – The name of the embedding model.
- Return type: None
await cache.adrop(
text="What is machine learning?",
model_name="text-embedding-ada-002"
)
async adrop_by_key(key)
Async remove an embedding from the cache by its Redis key.
Asynchronously removes an embedding from the cache by its Redis key.
- Parameters: key (str) – The full Redis key for the embedding.
- Return type: None
await cache.adrop_by_key("embedcache:1234567890abcdef")
async aexists(text, model_name)
Async check if an embedding exists.
Asynchronously checks if an embedding exists for the given text and model.
- Parameters:
- text (str) – The text input that was embedded.
- model_name (str) – The name of the embedding model.
- Returns: True if the embedding exists in the cache, False otherwise.
- Return type: bool
if await cache.aexists("What is machine learning?", "text-embedding-ada-002"):
print("Embedding is in cache")
async aexists_by_key(key)
Async check if an embedding exists for the given Redis key.
Asynchronously checks if an embedding exists for the given Redis key.
- Parameters: key (str) – The full Redis key for the embedding.
- Returns: True if the embedding exists in the cache, False otherwise.
- Return type: bool
if await cache.aexists_by_key("embedcache:1234567890abcdef"):
print("Embedding is in cache")
async aexpire(key, ttl=None)
Asynchronously set or refresh the expiration time for a key in the cache.
- Parameters:
- key (str) – The Redis key to set the expiration on.
- ttl (Optional [ int ] , optional) – The time-to-live in seconds. If None, uses the default TTL configured for this cache instance. Defaults to None.
- Return type: None
NOTE
If neither the provided TTL nor the default TTL is set (both are None), this method will have no effect.
async aget(text, model_name)
Async get embedding by text and model name.
Asynchronously retrieves a cached embedding for the given text and model name. If found, refreshes the TTL of the entry.
- Parameters:
- text (str) – The text input that was embedded.
- model_name (str) – The name of the embedding model.
- Returns: Embedding cache entry or None if not found.
- Return type: Optional[Dict[str, Any]]
embedding_data = await cache.aget(
text="What is machine learning?",
model_name="text-embedding-ada-002"
)
async aget_by_key(key)
Async get embedding by its full Redis key.
Asynchronously retrieves a cached embedding for the given Redis key. If found, refreshes the TTL of the entry.
- Parameters: key (str) – The full Redis key for the embedding.
- Returns: Embedding cache entry or None if not found.
- Return type: Optional[Dict[str, Any]]
embedding_data = await cache.aget_by_key("embedcache:1234567890abcdef")
async amdrop(texts, model_name)
Async remove multiple embeddings from the cache by their texts and model name.
Asynchronously removes multiple embeddings in a single operation.
- Parameters:
- texts (List [ str ]) – List of text inputs that were embedded.
- model_name (str) – The name of the embedding model.
- Return type: None
# Remove multiple embeddings asynchronously
await cache.amdrop(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
async amdrop_by_keys(keys)
Async remove multiple embeddings from the cache by their Redis keys.
Asynchronously removes multiple embeddings in a single operation.
- Parameters: keys (List [ str ]) – List of Redis keys to remove.
- Return type: None
# Remove multiple embeddings asynchronously
await cache.amdrop_by_keys(["embedcache:key1", "embedcache:key2"])
async amexists(texts, model_name)
Async check if multiple embeddings exist by their texts and model name.
Asynchronously checks existence of multiple embeddings in a single operation.
- Parameters:
- texts (List [ str ]) – List of text inputs that were embedded.
- model_name (str) – The name of the embedding model.
- Returns: List of boolean values indicating whether each embedding exists.
- Return type: List[bool]
# Check if multiple embeddings exist asynchronously
exists_results = await cache.amexists(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
async amexists_by_keys(keys)
Async check if multiple embeddings exist by their Redis keys.
Asynchronously checks existence of multiple keys in a single operation.
- Parameters: keys (List [ str ]) – List of Redis keys to check.
- Returns: List of boolean values indicating whether each key exists. The order matches the input keys order.
- Return type: List[bool]
# Check if multiple keys exist asynchronously
exists_results = await cache.amexists_by_keys(["embedcache:key1", "embedcache:key2"])
async amget(texts, model_name)
Async get multiple embeddings by their texts and model name.
Asynchronously retrieves multiple cached embeddings in a single operation. If found, refreshes the TTL of each entry.
- Parameters:
- texts (List [ str ]) – List of text inputs that were embedded.
- model_name (str) – The name of the embedding model.
- Returns: List of embedding cache entries or None for texts not found.
- Return type: List[Optional[Dict[str, Any]]]
# Get multiple embeddings asynchronously
embedding_data = await cache.amget(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
async amget_by_keys(keys)
Async get multiple embeddings by their Redis keys.
Asynchronously retrieves multiple cached embeddings in a single network roundtrip. If found, refreshes the TTL of each entry.
- Parameters: keys (List [ str ]) – List of Redis keys to retrieve.
- Returns: List of embedding cache entries or None for keys not found. The order matches the input keys order.
- Return type: List[Optional[Dict[str, Any]]]
# Get multiple embeddings asynchronously
embedding_data = await cache.amget_by_keys([
"embedcache:key1",
"embedcache:key2"
])
async amset(items, ttl=None)
Async store multiple embeddings in a batch operation.
Each item in the input list should be a dictionary with the following fields:
- ‘text’: The text input that was embedded
- ‘model_name’: The name of the embedding model
- ‘embedding’: The embedding vector
- ‘metadata’: Optional metadata to store with the embedding
- Parameters:
- items (List [ Dict [ str , Any ] ]) – List of dictionaries, each containing text, model_name, embedding, and optional metadata.
- ttl (int | None) – Optional TTL override for these entries.
- Returns: List of Redis keys where the embeddings were stored.
- Return type: List[str]
# Store multiple embeddings asynchronously
keys = await cache.amset([
{
"text": "What is ML?",
"model_name": "text-embedding-ada-002",
"embedding": [0.1, 0.2, 0.3],
"metadata": {"source": "user"}
},
{
"text": "What is AI?",
"model_name": "text-embedding-ada-002",
"embedding": [0.4, 0.5, 0.6],
"metadata": {"source": "docs"}
}
])
async aset(text, model_name, embedding, metadata=None, ttl=None)
Async store an embedding with its text and model name.
Asynchronously stores an embedding with its text and model name.
- Parameters:
- text (str) – The text input that was embedded.
- model_name (str) – The name of the embedding model.
- embedding (List [ float ]) – The embedding vector to store.
- metadata (Optional [ Dict [ str , Any ] ]) – Optional metadata to store with the embedding.
- ttl (Optional [ int ]) – Optional TTL override for this specific entry.
- Returns: The Redis key where the embedding was stored.
- Return type: str
key = await cache.aset(
text="What is machine learning?",
model_name="text-embedding-ada-002",
embedding=[0.1, 0.2, 0.3, ...],
metadata={"source": "user_query"}
)
clear()
Clear the cache of all keys.
- Return type: None
disconnect()
Disconnect from Redis.
- Return type: None
drop(text, model_name)
Remove an embedding from the cache.
- Parameters:
- text (str) – The text input that was embedded.
- model_name (str) – The name of the embedding model.
- Return type: None
cache.drop(
text="What is machine learning?",
model_name="text-embedding-ada-002"
)
drop_by_key(key)
Remove an embedding from the cache by its Redis key.
- Parameters: key (str) – The full Redis key for the embedding.
- Return type: None
cache.drop_by_key("embedcache:1234567890abcdef")
exists(text, model_name)
Check if an embedding exists for the given text and model.
- Parameters:
- text (str) – The text input that was embedded.
- model_name (str) – The name of the embedding model.
- Returns: True if the embedding exists in the cache, False otherwise.
- Return type: bool
if cache.exists("What is machine learning?", "text-embedding-ada-002"):
print("Embedding is in cache")
exists_by_key(key)
Check if an embedding exists for the given Redis key.
- Parameters: key (str) – The full Redis key for the embedding.
- Returns: True if the embedding exists in the cache, False otherwise.
- Return type: bool
if cache.exists_by_key("embedcache:1234567890abcdef"):
print("Embedding is in cache")
expire(key, ttl=None)
Set or refresh the expiration time for a key in the cache.
- Parameters:
- key (str) – The Redis key to set the expiration on.
- ttl (Optional [ int ] , optional) – The time-to-live in seconds. If None, uses the default TTL configured for this cache instance. Defaults to None.
- Return type: None
NOTE
If neither the provided TTL nor the default TTL is set (both are None), this method will have no effect.
get(text, model_name)
Get embedding by text and model name.
Retrieves a cached embedding for the given text and model name. If found, refreshes the TTL of the entry.
- Parameters:
- text (str) – The text input that was embedded.
- model_name (str) – The name of the embedding model.
- Returns: Embedding cache entry or None if not found.
- Return type: Optional[Dict[str, Any]]
embedding_data = cache.get(
text="What is machine learning?",
model_name="text-embedding-ada-002"
)
get_by_key(key)
Get embedding by its full Redis key.
Retrieves a cached embedding for the given Redis key. If found, refreshes the TTL of the entry.
- Parameters: key (str) – The full Redis key for the embedding.
- Returns: Embedding cache entry or None if not found.
- Return type: Optional[Dict[str, Any]]
embedding_data = cache.get_by_key("embedcache:1234567890abcdef")
mdrop(texts, model_name)
Remove multiple embeddings from the cache by their texts and model name.
Efficiently removes multiple embeddings in a single operation.
- Parameters:
- texts (List [ str ]) – List of text inputs that were embedded.
- model_name (str) – The name of the embedding model.
- Return type: None
# Remove multiple embeddings
cache.mdrop(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
mdrop_by_keys(keys)
Remove multiple embeddings from the cache by their Redis keys.
Efficiently removes multiple embeddings in a single operation.
- Parameters: keys (List [ str ]) – List of Redis keys to remove.
- Return type: None
# Remove multiple embeddings
cache.mdrop_by_keys(["embedcache:key1", "embedcache:key2"])
mexists(texts, model_name)
Check if multiple embeddings exist by their texts and model name.
Efficiently checks existence of multiple embeddings in a single operation.
- Parameters:
- texts (List [ str ]) – List of text inputs that were embedded.
- model_name (str) – The name of the embedding model.
- Returns: List of boolean values indicating whether each embedding exists.
- Return type: List[bool]
# Check if multiple embeddings exist
exists_results = cache.mexists(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
mexists_by_keys(keys)
Check if multiple embeddings exist by their Redis keys.
Efficiently checks existence of multiple keys in a single operation.
- Parameters: keys (List [ str ]) – List of Redis keys to check.
- Returns: List of boolean values indicating whether each key exists. The order matches the input keys order.
- Return type: List[bool]
# Check if multiple keys exist
exists_results = cache.mexists_by_keys(["embedcache:key1", "embedcache:key2"])
mget(texts, model_name)
Get multiple embeddings by their texts and model name.
Efficiently retrieves multiple cached embeddings in a single operation. If found, refreshes the TTL of each entry.
- Parameters:
- texts (List [ str ]) – List of text inputs that were embedded.
- model_name (str) – The name of the embedding model.
- Returns: List of embedding cache entries or None for texts not found.
- Return type: List[Optional[Dict[str, Any]]]
# Get multiple embeddings
embedding_data = cache.mget(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
mget_by_keys(keys)
Get multiple embeddings by their Redis keys.
Efficiently retrieves multiple cached embeddings in a single network roundtrip. If found, refreshes the TTL of each entry.
- Parameters: keys (List [ str ]) – List of Redis keys to retrieve.
- Returns: List of embedding cache entries or None for keys not found. The order matches the input keys order.
- Return type: List[Optional[Dict[str, Any]]]
# Get multiple embeddings
embedding_data = cache.mget_by_keys([
"embedcache:key1",
"embedcache:key2"
])
mset(items, ttl=None)
Store multiple embeddings in a batch operation.
Each item in the input list should be a dictionary with the following fields:
- ‘text’: The text input that was embedded
- ‘model_name’: The name of the embedding model
- ‘embedding’: The embedding vector
- ‘metadata’: Optional metadata to store with the embedding
- Parameters:
- items (List [ Dict [ str , Any ] ]) – List of dictionaries, each containing text, model_name, embedding, and optional metadata.
- ttl (int | None) – Optional TTL override for these entries.
- Returns: List of Redis keys where the embeddings were stored.
- Return type: List[str]
# Store multiple embeddings
keys = cache.mset([
{
"text": "What is ML?",
"model_name": "text-embedding-ada-002",
"embedding": [0.1, 0.2, 0.3],
"metadata": {"source": "user"}
},
{
"text": "What is AI?",
"model_name": "text-embedding-ada-002",
"embedding": [0.4, 0.5, 0.6],
"metadata": {"source": "docs"}
}
])
set(text, model_name, embedding, metadata=None, ttl=None)
Store an embedding with its text and model name.
- Parameters:
- text (str) – The text input that was embedded.
- model_name (str) – The name of the embedding model.
- embedding (List [ float ]) – The embedding vector to store.
- metadata (Optional [ Dict [ str , Any ] ]) – Optional metadata to store with the embedding.
- ttl (Optional [ int ]) – Optional TTL override for this specific entry.
- Returns: The Redis key where the embedding was stored.
- Return type: str
key = cache.set(
text="What is machine learning?",
model_name="text-embedding-ada-002",
embedding=[0.1, 0.2, 0.3, ...],
metadata={"source": "user_query"}
)
set_ttl(ttl=None)
Set the default TTL, in seconds, for entries in the cache.
- Parameters: ttl (Optional [ int ] , optional) – The optional time-to-live expiration for the cache, in seconds.
- Raises: ValueError – If the time-to-live value is not an integer.
- Return type: None
property ttl: int | None
The default TTL, in seconds, for entries in the cache.