
Caching for Microservices
Speed up and simplify your microservices
applications with Redis Enterprise

Solution Brief

© 2022 Redis

Redis Solution Brief / Caching for Microservices

2

© 2022 Redis

Redis Enterprise was designed and built with many of the same core principles that guide
microservices architectures: agility, resilience, scalability, and flexibility. This alignment makes
Redis Enterprise an ideal caching solution for microservices applications. But not only does
Redis Enterprise align with the strengths of microservices – it also helps overcome two key
microservices challenges: complexity and latency.

What are microservices?
A microservices architecture breaks an application into
a collection of decoupled and lightweight services. Each
microservice is built around a specific business context
– a goal, focus, or problem area – that is known as its
domain. These modular services communicate via API
to perform their own functions within the application.
Each service is isolated around its domain context and
supported by individual teams that are empowered to
own and operate their own microservices. This ensures
that components are individually deployable, individually
scalable, resilient, and fully owned by an agile team.

Microservices benefits

The agile, isolated, and focused nature of microservices
applications brings significant advantages. Some of
these benefits include:

• Team-empowerment: Small independent teams
can quickly deploy code to adapt to changing
conditions with great agility

• Flexibility: Each service can be built with the
technology that best fits its unique needs

• Reusability: Simple and modular code is reusable
and can be applied to multiple purposes to enable
faster development.

• Isolation: Isolation ensures that application
components are individually operable and scalable,
and provides fault isolation to prevent failure with
microservices from impacting one another.

Key microservices challenges

Despite the many benefits, microservices architectures
are not without drawbacks. The most common and
critical microservices challenges are:

• Increased complexity
Complexity is the downside that comes with a
multitude of small and independent services. Each
of these individual microservices must be operated
independently and each has unique data needs that
introduce a tremendous amount of complexity. Different
microservices often have unique data use cases or
require unique data models, each of which may require
its own databases or data management solution
to support. Additionally, data consistency must be
maintained as data is shared and processed amongst
dozens or even hundreds of individual microservices.

• Latency
Latency is another downside. Each of these
independent services must communicate via
API calls. Calls to a multitude of different services
introduce the problem of network latency, which
can leave larger and more complex microservices
applications facing issues with slow response time.

Isolation is a key microservices
principle that calls for completely
decoupled code, teams, databases,
and deployment cycles to increase
scalability, agility, and fault isolation
and produce faster, more resilient
applications. Each of these isolated
services is operated by an agile
and empowered team that can act
quickly to deploy new features or
respond quickly to potential issues.

Redis Solution Brief / Caching for Microservices

3

© 2022 Redis

Caching delivers fast
and consistent data to
microservices
Data performance is especially critical to microservices
applications. Caching to decrease data latency is a great
way to counteract the network latency that often builds
due to the multiple API calls required for interservice
communication - and gain back critical response time.

Caching is also an excellent way to distribute data that
must be shared by multiple domains from a system of
record without breaking the scope of each individual
microservices domain context.

How is Redis Enterprise
used for microservices
caching?
Microservice caches typically implement one of the
following patterns based on the scope of data access
across the architecture:

• API gateway level: For globally shared data that
must be accessed by all microservices (session
data, authentication tokens, etc.)

• CQRS: For data shared by multiple microservices,
but not needed by all at the global level (cross-
domain data)

• Query caching (sidecar): For data within a single
microservice (domain specific)

Caching globally shared user
session and authentication data at
the API gateway level

Microservices applications often cache globally
accessed data at the API gateway level to distribute and
speed up data that is accessed by all services. A perfect
example of this is caching session and authentication
data. This approach makes frequently needed session

data available in real-time to all services,
reducing application latency without breaking
the bounds of each microservice’s individual
business context.

When a user logs in, key session data (user
ID, preferences, etc.) or their authentication
(authorization status, permissions, etc.) are
cached in Redis Enterprise and checked
by the API before the user interacts with
individual microservices.

Customer story:
Online dating application

Let’s take a look at a customer example from
a popular online dating application. The
application has individual microservices to
perform specific tasks like:

• Manage user profiles (Profile
microservice)

• Upload and manage photos (Photo
microservice)

• List and manage matches with other
profiles (Match microservice)

• Communicate with other users and
matches (Communication microservice)

• Surface important notifications to the
user using alert (Alerts microservice)

This customer application supports
millions of users daily to facilitate activity
as users update hundreds of thousands
of photos, send millions of messages,
and match with tens of millions of other
users. In order to reduce latency during
user sessions, Redis Enterprise is used to
cache authentication data in a token that
can be quickly pulled by the API gateway
to authenticate users and relay key
information about their session like user
settings and permissions.

Redis Solution Brief / Caching for Microservices

4

© 2022 Redis

Login API Gateway

Client

Profile Photos Matches Comms Alerts Newsfeed

1

2
4

3

 5
ENTERPRISE ENTERPRISE

Refresh
token

Access
token

Explore a customer online dating application
using Redis Enterprise to cache session data.

1. The client is the user interface. This
application was available on desktop, mobile
web, Android, and iOS.

2. A user logs in with their credentials
3. Two tokens are created with user

authentication and session data. These tokens
are cached in Redis Enterprise. One is an
access token and the other is a refresh token.
The access token is used by the API during the
user session, and it contains authentication
data, user information, and permissions.
This token has a two day time to live (TTL).
Once the Authentication Token expires a new
access token can be generated from a Refresh
Token, which has a longer TTL and is used to
keep users logged in should they have the
“keep me logged in” setting enabled.

4. The API gateway manages calls from the
many microservices that power the online
dating application. When a request is made,
the API gateway checks the session token
cached in Redis Enterprise to see if the user is
authenticated and lets the transaction occur,

while passing on key session information like
user data and permissions.

5. Each of the individual microservices to
manage dating profiles, upload, and manage
pictures, view and manage dating matches,
send communications to other profiles,
surface alerts to users, and display relevant
news in a newsfeed need to interact with the
API gateway. The API gateway first checks
if a session is valid before allowing the
microservice call to go through.

Redis Enterprise benefits:

• Using Redis Enterprise as a cache to store
user session and authentication data enabled
low-latency customer experiences by ensuring
widely accessed data was available in
sub-milliseconds

• Redis Enterprise’s scalability ensured that
application latency remained low even during
periods of peak user activity

• Redis Enterprise’s 99.999% uptime ensured
that the customer could store critical data in
memory with confidence, avoiding customer
disruptions due to lost session data

Redis Solution Brief / Caching for Microservices

5

© 2022 Redis

Caching cross-domain shared
data via CQRS

Microservices need fast access to data but this can
be challenging when there are dozens or hundreds
of microservices trying to read from the same slow
disk-based database. Cross-domain data needs to be
made available to each microservice in real-time - and
without breaking the scope of its focused business
context and goal.

Command Query Responsibility Segregation (CQRS)
is a critical pattern common to many customers
using Redis Enterprise as a cache in microservices
environments. It enables an application to write data
to a slower disk-based database, while pre-fetching
and caching that data in Redis Enterprise to make it
available in real-time to additional microservices that
must be able to read application data.

Client

Write Read

API Gateway

ENTERPRISEDatabase

Eventual consistency

A CQRS Pattern

Customer example:
Payment processing
microservices application

Let’s take a look at a customer example from
a financial services microservices application.
The application has individual microservices to
perform specific tasks like:

• Approve or decline payments (Payment
Approval microservice)

• View payment history (Payment History
microservice)

• Clear and settle payments (Clearing and
Settlement microservice)

• And update a customer’s risk profile (Risk
Profile microservice)

The Payment History, Clearing and Settlement, and
Risk Profile microservices are each dependent upon
the data from the Payment Approval microservice.

The Payment Approval microservice must be able
to write the outcome of each processed payment
(whether it was approved or declined) to the
database acting as the application’s system of
record. In order to avoid the latency of all of these
microservices calling on a slow database, a CQRS
pattern is utilized. Additionally, CQRS eliminates the
business dependency on the database, replicating
data and freeing each microservice to operate, scale,
and deploy code independently.

Using the CQRS pattern, the microservices API
provides the Payment Approval microservice with
write-only access to the database so it may record
if a transaction was approved or denied.

This data is then pre-fetched into a Redis
Enterprise cache that is read and used across
domains by the Payment History, Clearing and
Settlement, and Risk Profile microservices.

Redis Solution Brief / Caching for Microservices

6

© 2022 Redis

Explore a customer payment processing
application using Redis Enterprise as a cache in
a CQRS pattern

1. The client is the user interface (mobile
application, web app, etc.).

2. The API gateway handles all communication
between the client and each of the
microservices applications, in addition to
interservice communication.

3. The Payment Approval microservices
determines whether or not a payment is
approved or declined and then writes that
decision to the application database

4. The application database is a persistent
disk-based database acting as the system
of record for all payments. It contains their
approval status and metadata associated with
each payment, like date, account number,
etc. The API gateway only allows writes to the
Payment Approval microservices, all others are
read only.

5. The Redis Enterprise cache is pre-fetched
with payment approval data, and any new
payments written to the application database
are replicated to the Redis Enterprise cache
with eventual consistency.

6. The Payment History microservice reads data
from Redis Enterprise to view payment dates,
status, and other metadata.

7. The Clearing and Settlement microservice
reads data from the Redis Enterprise cache
and moves funds between a sender and
recipient account for any transactions
approved by the Payment Approval
microservice.

8. The Risk Profile microservice reads data
from the Redis Enterprise cache to update
customer risk profiles after a transaction is
approved or denied.

Redis Enterprise benefits:

• Using Redis Enterprise as a cache reduced
application latency by ensuring that payment
approval was cached and available across
domains to downstream microservices in
sub-milliseconds

• Caching cross-domain data also ensured that the
customer was able to eliminate critical business
dependency on the database, allowing each
microservice autonomy to operate on its own
release cycle, without compromising data integrity

• With the ability to scale up to 200 million
operations/second, Redis Enterprise was able to
effortlessly handle increases in system activity
while maintaining sub-millisecond latency. It
was also resilient enough to ensure that critical
payment data wasn’t subject to loss due to
cache outage

API Gateway

Client

Payment
Approval

Payment
History

Clearing and
Settlement

Risk
Profile

1

2

4

3 6 7 8

 5

ENTERPRISEEventual consistency

WRITE READ READ READ

Redis Solution Brief / Caching for Microservices

7

© 2022 Redis

Query caching for data within a
single business context

Building a microservices architecture from the ground
up requires following the principle of domain-driven
design to split applications into isolated and logical
areas of focus. This approach typically leads architects
to pursue the benefits of CQRS and globally-shared
data at the API gateway. However, in many real-world
scenarios enterprises do not start with a blank slate
and must work around the constraints of their legacy
architecture and technical debt.

For example, an existing relational database may already
be used to support multiple microservices. While it meets
most of their needs - one particular service may have
issues maintaining its performance SLAs. Instead of
replatforming the entire system, Redis Enterprise can be
deployed into the existing architecture using a cache-
aside or sidecar pattern by query-caching the results from
the RDBMS. With Redis Enterprise, each query-cache
can be deployed in a multi-tenant cluster that provides
physical isolation to maintain domain independence.

A sidecar architecture can be deployed to speed up
data that is needed by an individual microservice with a
single domain context. It acts with a cache-aside pattern
where data queries from the microservice are first sent to
the Redis Enterprise cache. If data is present, results are
delivered at sub-millisecond speed. If the data does not
exist in the cache, it is delivered by the primary database
and stored in the cache to lower the latency of future
requests. Redis Enterprise can also be deployed with
multi-tenancy, enabling multiple completely isolated
caches hosted on the same cluster to each support their
own single domain microservices.

Client

Microservice 1 Microservice 2

API Gateway

Database 1 ENTERPRISE ENTERPRISE

Cache 1

REDIS ENTERPRISE CLUSTER

Cache 2

Database 2

EXAMPLE OF A SIDECAR PATTERN

Redis Solution Brief / Caching for Microservices

8

© 2022 Redis

Redis Enterprise enables
faster and easier to
operate microservices
applications
Reduced operational complexity

Redis Enterprise offers simplified management to
reduce the operational complexity that comes with
microservices architectures. It provides the ability
to manage dozens of multi-tenant and multimodal
databases and their unique data needs in one
platform. Aspects of each Redis Enterprise cache can
be customized for each microservice with their own
durability, throughput, persistence, and replication
requirements. The ability to deploy and manage
individual caches based on the unique needs of each
domain enables the key microservices principles of
isolation and team empowerment.

Real-time speed for faster
microservices

All of that network latency can drag down application
performance. With sub-millisecond performance for
data queries and messaging, Redis Enterprise provides
a way to gain back much of the time lost by interservice
communication to greatly improve performance.

All the benefits of a full house
(without noisy neighbors)

A multi-tenant architecture allows individual
resources (databases or virtual machines) to be
shared by multiple separate users. These users
could be individual customers or business units that
share access. Think of a single tenant system like a
standalone home, while a multi-tenant one is like an
apartment - the building is shared but each tenant
has its own individual living space. Multi-tenancy
brings obvious benefits like cost efficiency, simplified
architecture, and better resource utilization.

However, multi-tenancy runs afoul of the microservices
practice of completely isolating individual application
components. Multi-tenant systems often run into
challenges competing for resources, and individual
services may overconsume a resource shared by other
microservices. This problem is commonly referred to as
a noisy neighbor.

Redis Enterprise allows for the best of both worlds,
providing the benefits of multi-tenancy with the level
of isolation required for microservices. Because its
cluster architecture provides isolation at every level, it
avoids the common problem of noisy neighbors. Redis
Enterprise’s approach solves the problem of isolation
without the tradeoff of management complexity.

Redis Solution Brief / Caching for Microservices

9

© 2022 Redis

Redis Enterprise brings real-time speed for all your microservices
data needs

Redis Enterprise can also be used to extend real-time performance
to a number of microservices use cases beyond caching, like;
interservice communication and event sourcing and is also
commonly used as a lightweight database to support individual
microservices.

But that’s not all…

Want to learn more about
caching and microservices?

Read the definitive guide to caching with Redis. Download the
Caching at Scale with Redis ebook.
Download now

Learn how to develop and operate a high-performance
microservices architecture, with Redis in our Redis Microservices
for Dummies ebook.
Read now

Learn from Allen Terleto, Field CTO at Redis, and Viren Baraiya, the
co-creator of Netflix Conductor and CTO at Orkes, how you can
overcome key microservices challenges and scale reliably using
an in-memory data layer and workflow orchestrator.
Watch now

https://redis.com/docs/caching-at-scale-with-redis/
https://redis.com/docs/redis-microservices-for-dummies/
https://www.youtube.com/watch?v=8CmAFMfuLqo&t=368s

